1. Длина математического маятника 0,8 метра. Чему равен период и частота его колебаний на Земле.
2. Два математических маятника с одинаковыми длинами 1,5 м находятся рядом друг с другом. Амплитуда колебаний первого - 3 см, второго – 6 см. Как различаются периоды их колебаний?
3. Математический маятник совершил 15 колебаний за одну минуту. Каковы период и частота колебаний?
4. Координаты математического маятника изменяются по закону:
.
Чему равны амплитуда, период и частота колебаний. В формуле все величины выражены в системе СИ.
Математический маятник – это абстрактное представление о грузе, имеющем массу, но не имеющем объема, подвешенном на невесомой нерастяжимой нити, длина которой многократно превосходит амплитуду колебаний. Реальным приближением к этому является тяжелый шарик, подвешенный на длинной тонкой нити, совершающий колебания небольшой амплитуды. Математический маятник подчиняется законам движения, по которым можно определить период его колебаний, зная длину нити и ускорение свободного падения в данном месте. Место может быть любое – хоть Луна или Марс, главное – знать ускорение свободного падения. Интересно, что период колебаний математического маятника не зависит от его массы.
1. Кратко записываем условие, изображаем его графически. На рисунке обозначаем необходимые данные: силы, действующие на маятник, направление его движения, длину нити.
2. Записываем основную формулу для определения периода колебаний математического маятника и другие необходимые формулы колебательного движения. Определяем, какие величины надо найти из других механических соотношений, записываем их.
3. Решаем полученные уравнения в общем виде.
4. Подставляем данные, вычисляем. Перед подстановкой переводим все данные в единую систему.
5. Записываем ответ.
Длина математического маятника 0,8 метра. Чему равен период и частота его колебаний на Земле.
Решение.
1. Кратко записываем условие, изображаем его графически.
|
|
2. Записываем основную формулу для определения периода колебаний математического маятника.
Записываем соотношение между периодом и частотой колебаний.
3. Решаем уравнение в общем виде. Формула сразу дает общее решение.
4. Подставляем данные, вычисляем.
5. Ответ: Период колебаний равен 1,8 секунды, частота – 0,56 колебания в секунду.
Два математических маятника с одинаковыми длинами 1,5 м находятся рядом друг с другом. Амплитуда колебаний первого - 3 см, второго – 6 см. Как различаются периоды их колебаний?
Решение.
1. Кратко записываем условие, изображаем его графически.
|
|
2. Записываем основную формулу для определения периода колебаний математического маятника.
3. Решаем полученные уравнения в общем виде.
4. Подставляем данные, вычисляем.
Можно вычислять впрямую, а можно сразу сказать, что поскольку длины равны, то и периоды колебаний этих маятников тоже будут равны. Вот как интересно, оказывается, период колебаний математического маятника не зависит от амплитуды.
5. Ответ: Периоды колебаний этих маятников равны между собой.
Математический маятник совершил 15 колебаний за одну минуту. Каковы период и частота колебаний?
Решение.
1. Кратко записываем условие, изображаем его графически.
|
|
2. Основная формула для определения периода колебаний математического маятника в этой задаче не используется. Используются соотношения для частоты колебаний и их периода.
Частота колебаний – это количество колебаний в единицу времени. Она задана в задаче, только во внесистемных единицах: количество колебаний в минуту. Ее надо преобразовать в системную: в количество колебаний в секунду.
Период колебаний
3. Эти формулы сразу дают решение в общем виде.
4. Подставляем данные, вычисляем.
5. Ответ: частота равна четверти колебаний в секунду или 0,25 Гц, период – четырем секундам.
Координаты математического маятника изменяются по закону
.
Чему равны амплитуда, период и частота колебаний. В формуле все величины выражены в системе СИ.
Решение.
1. Кратко записываем условие, изображаем его графически.
2. Записываем общее уравнение гармонического колебания. Сравниваем заданное уравнение движения маятника с общим уравнением.
3. Из сравнения получаем:
Отсюда легко вычисляется частота и период колебаний.
4. Подставляем данные, вычисляем
5. Ответ: Амплитуда колебаний равна 0,5 метра, период – четырем секундам, частота – 0,25 Гц.